Basics of Statistics

Summary Measures

Measures of Central Tendency

Overview

Arithmetic Mean

- The arithmetic mean (mean) is the most common measure of central tendency
- For a sample of size n :

Sample size
Observed values

Arithmetic Mean

- The most common measure of central tendency
- Mean = sum of values divided by the number of values
- Affected by extreme values (outliers)

$$
\frac{1+2+3+4+5}{5}=\frac{15}{5}=3
$$

$$
\frac{1+2+3+4+10}{5}=\frac{20}{5}=4
$$

Median

- In an ordered array, the median is the "middle" number (50\% above, 50\% below)

- Not affected by extreme values

Finding the Median

- The location of the median:

Median position $=\frac{\mathrm{n}+1}{2}$ position in the ordered data

- If the number of values is odd, the median is the middle number
- If the number of values is even, the median is the average of the two middle numbers
- Note that $\frac{\mathrm{n}+1}{2}$ is not the value of the median, only the 2 position of the median in the ranked data

Mode

- A measure of central tendency
- Value that occurs most often
- Not affected by extreme values
- Used for either numerical or categorical (nominal) data
- There may may be no mode
- There may be several modes

No Mode

Review Example

- Five houses on a hill by the beach

House Prices:
$\$ 2,000,000$
500,000
300,000
100,000
100,000

Review Example: Summary Statistics

House Prices:
\$2,000,000 500,000 300,000 100,000
100,000
Sum \$3,000,000

- Mean: (\$3,000,000/5)
= \$600,000
- Median: middle value of ranked data
= \$300,000
- Mode: most frequent value
$=\$ 100,000$

Which measure of location is the "best"?

- Mean is generally used, unless extreme values (outliers) exist
- Then median is often used, since the median is not sensitive to extreme values.
- Example: Median home prices may be reported for a region - less sensitive to outliers

Measures of Variation

- Measures of variation give information on the spread or variability of the data values.

Range

- Simplest measure of variation
- Difference between the largest and the smallest values in a set of data:

$$
\text { Range }=X_{\text {largest }}-X_{\text {smallest }}
$$

Example:

Range = 14-1 = 13

Variance

- Average (approximately) of squared deviations of values from the mean
- Sample variance:

$$
S^{2}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{n-1}
$$

Where

$$
\begin{aligned}
& \bar{X}=\text { mean } \\
& n=\text { sample size } \\
& X_{i}=i^{\text {th }} \text { value of the variable } X
\end{aligned}
$$

Standard Deviation

- Most commonly used measure of variation
- Shows variation about the mean
- Is the square root of the variance
- Has the same units as the original data
- Sample standard deviation:

$$
S=\sqrt{\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{n-1}}
$$

Calculation Example: Sample Standard Deviation

Sample Data (X_{i}): $\begin{array}{lllllllll}10 & 12 & 14 & 15 & 17 & 18 & 18 & 24\end{array}$

$$
\begin{gathered}
\mathrm{n}=8 \quad \text { Mean }=\bar{X}=16 \\
S=\sqrt{\frac{(10-\bar{X})^{2}+(12-\bar{X})^{2}+(14-\bar{X})^{2}+\cdots+(24-\bar{X})^{2}}{n-1}}
\end{gathered}
$$

$$
=\sqrt{\frac{(10-16)^{2}+(12-16)^{2}+(14-16)^{2}+\cdots+(24-16)^{2}}{8-1}}
$$

$$
=\sqrt{\frac{130}{7}}=4.3095 \Longrightarrow \begin{aligned}
& \text { A measure of the "average" } \\
& \text { scatter around the mean }
\end{aligned}
$$

Measuring variation

Comparing Standard Deviations

Mean $=15.5$
$S=3.338$

Mean $=15.5$
$S=0.926$

Mean $=15.5$
$S=4.567$

Example

- UP Crop Data on SPSS
- How to draw inferences from them?

