Basics of Statistics

Arithmetic Mean

- The arithmetic mean (mean) is the most common measure of central tendency
 - For a sample of size n:

Arithmetic Mean (continued)

- The most common measure of central tendency
- Mean = sum of values divided by the number of values
- Affected by extreme values (outliers)

Not affected by extreme values

Finding the Median

The location of the median:

Median position = $\frac{n+1}{2}$ position in the ordered data

- If the number of values is odd, the median is the middle number
- If the number of values is even, the median is the average of the two middle numbers
- Note that $\frac{n+1}{2}$ is not the *value* of the median, only the *position* of the median in the ranked data

Mode

- A measure of central tendency
- Value that occurs most often
- Not affected by extreme values
- Used for either numerical or categorical (nominal) data
- There may may be no mode
- There may be several modes

Review Example: Summary Statistics

House Prices:	Mean: (\$3,000,000/5)
\$2,000,000	= \$600.000
500,000	<i> </i>
300,000	
100,000	- Madian, middle value of replied date
100,000	• weatan: middle value of ranked data
Sum \$3,000,000	= \$300,000

Mode: most frequent value = \$100,000

Which measure of location is the "best"?

- Mean is generally used, unless extreme values (outliers) exist
- Then median is often used, since the median is not sensitive to extreme values.
 - Example: Median home prices may be reported for a region – less sensitive to outliers

- Average (approximately) of squared deviations of values from the mean
 - Sample variance:

$$S^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}{n-1}$$

Where \overline{X} = mean n = sample size X_i = ith value of the variable X

Standard Deviation

- Most commonly used measure of variation
- Shows variation about the mean
- Is the square root of the variance
- Has the same units as the original data

Sample standard deviation:

$$S = \sqrt{\frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n-1}}$$

Calculation Example: Sample Standard Deviation

Sample Data (X_i)

(X_i): 10 12 14 15 17 18 18 24
n = 8 Mean =
$$\overline{X}$$
 = 16
 $\sqrt{(10-\overline{X})^2 + (12-\overline{X})^2 + (14-\overline{X})^2 + \dots + (24-\overline{X})^2}$

$$S = \sqrt{\frac{(10-X)^{2} + (12-X)^{2} + (14-X)^{2} + \dots + (24-X)^{2}}{n-1}}$$

$$=\sqrt{\frac{(10-16)^2+(12-16)^2+(14-16)^2+\dots+(24-16)^2}{8-1}}$$

$$=\sqrt{\frac{130}{7}} = 4.3095 \Longrightarrow$$

A measure of the "average" scatter around the mean

Measuring variation

Comparing Standard Deviations

Example

- UP Crop Data on SPSS
- How to draw inferences from them?